天津科技 ›› 2025, Vol. 52 ›› Issue (12): 22-24.

• 基础研究 • 上一篇    下一篇

分布式计算在石油勘探数据处理中的应用与性能优势验证

马德志, 王炜, 孙雷鸣, 焦叙明, 张明强, 邹俊杰   

  1. 中海油田服务股份有限公司物探事业部 天津 300459
  • 收稿日期:2025-11-03 出版日期:2025-12-25 发布日期:2026-01-05
  • 基金资助:
    中国海洋石油集团公司科研项目“基于分布式计算技术的地震处理平台建设及成像系统集成应用(II期)”(KJZH-2024-1907)

Application of distributed computing in oil exploration data processing and verification of its performance advantages

MA Dezhi, WANG Wei, SUN Leiming, JIAO Xuming, ZHANG Mingqiang, ZOU Junjie   

  1. Geophysical Division, China Oilfield Services Limited,Tianjin 300459, China
  • Received:2025-11-03 Online:2025-12-25 Published:2026-01-05

摘要: 随着全球油气资源勘探技术的不断进步,数据密集型地震勘探正面临处理效率与计算能力的双重挑战,传统集中式计算架构难以满足当前TB(Terabyte)级乃至PB(Petabyte)级地震数据的高效处理需求。为解决这一问题,提出并实施基于Apache Spark的分布式计算平台在石油勘探中的应用方案,充分利用其内存计算、弹性调度与分布式数据管理能力,对海量地震数据进行高效的读写、排序与预处理操作。通过与传统商用软件在I/O性能、数据并行分选排序等方面进行对比,验证了Apache Spark架构在石油勘探应用中的性能优势和可行性。

关键词: 大数据, 油气勘探, Apache Spark, 分布式计算, 数据处理

Abstract: With the continuous advancement of global oil and gas resource exploration technology,data-intensive seismic exploration is facing the dual challenges of processing efficiency and computing power. Traditional centralized computing architectures are difficult to meet the current efficient processing needs of TB-level or even PB-level seismic data. To cope with this dilemma,this paper proposes and implements an application solution for distributed computing platforms based on Apache Spark in oil exploration,making full use of its memory computing,elastic scheduling and distributed data management capabilities to perform efficient reading,writing,sorting and preprocessing operations on massive seismic data. Through comparative experiments with traditional commercial software in terms of I/O performance,computing parallelism and scalability,the performance advantages and feasibility of the Apache Spark architecture in oil exploration business are verified.

Key words: big data, oil and gas exploration, Apache Spark, distributed computing, data processing

中图分类号: