天津科技 ›› 2025, Vol. 52 ›› Issue (12): 25-28.

• 基础研究 • 上一篇    下一篇

基于BP神经网络的地层原油黏度预测模型及其应用

欧银华, 郑金定, 任帅, 肖波, 陈铭阳   

  1. 中海石油(中国)有限公司天津分公司 天津 300459
  • 收稿日期:2025-11-03 出版日期:2025-12-25 发布日期:2026-01-05
  • 基金资助:
    中国海油重大科技专项“海上‘双高—双特高’水驱油田提高采收率油藏关键技术”(KJGG2021-0501)

Prediction model of formation crude oil viscosity based on BP neural network and its application

OU Yinhua, ZHENG Jinding, REN Shuai, XIAO Bo, CHEN Mingyang   

  1. Tianjin Branch,CNOOC <China>Co.,Ltd.,Tianjin 300459, China
  • Received:2025-11-03 Online:2025-12-25 Published:2026-01-05

摘要: 受成本、场地、工期、天气等因素影响,海上油田PVT[压力(P)、体积(V)和温度(T)]原油取样较少,常规方法预测地层原油黏度考虑因素有限,误差较大,为此提供一种解决该问题的新方法:综合考虑P油田取样深度、地层温度、地层压力,生产气油比、地面原油密度、地面原油黏度等参数,建立BP神经网络地层原油黏度预测模型。研究结果表明,该模型预测精度非常高,地层原油黏度模型训练集决定系数为0.94、预测集决定系数为0.95时,P油田地层原油黏度主控因素为地面原油密度和地面原油黏度。

关键词: 地层原油黏度, 机器学习, 逆传播神经网络, 地面原油密度

Abstract: Due to factors such as cost,site conditions,construction period and weather,the sampling of crude oil for PVT (pressure,volume and temperature) in offshore oilfields is relatively limited. The conventional empirical formula method for predicting formation crude oil viscosity considers limited factors,and the error is relatively large. To address these issues,a new method is proposed:a BP neural network-based prediction model for formation crude oil viscosity is established by comprehensively considering parameters such as sampling depth,formation temperature,formation pressure,gas-oil ratio,surface crude oil density,and surface crude oil viscosity of Oilfield P as input parameters. The research results show that the model exhibits extremely high prediction accuracy. When the coefficient of determination (R2) of the formation crude oil viscosity model reaches 0.94 for the training set and 0.95 for the prediction set,the dominant controlling factors of formation crude oil viscosity in Oilfield P are surface crude oil density and surface crude oil viscosity.

Key words: formation crude oil viscosity, machine learning, BP neural network, surface crude oil density

中图分类号: