[1] ZOU Z X,CHEN K Y,SHI Z W,et al.Object detection in 20 years:A survey[J]. Proceedings of the IEEE,2023,111(3):257-276.
[2] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,NV,USA:IEEE,2016:779-788.
[3] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,HI,USA:IEEE,2017:6517-6525.
[4] REDMON J,FARHADI A.YOLOv3:An Incremental improvement[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE,2018,1804:1-6.
[5] BOCHKOVSKIY A,WANG C Y,LIAO H M.YOLOv4:Optimal speed and accuracy of object detection[EB/OL]. [2024-12-05].https://arxiv.org/abs/2004.10934v1.
[6] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus,OH,USA:IEEE,2014:580-587.
[7] GIRSHICK R.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago,Chile:IEEE,2015:1440-1448.
[8] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[9] NIE X,DUAN M Y,DING H X,et al.Attention mask R-CNN for ship detection and segmentation from remote sensing images[J]. IEEE Access,2020,8:9325-9334.
[10] KIM K,HONG S,CHOI B,et al.Probabilistic ship detection and classification using deep learning[J]. Applied Sciences,2018,8(6):936.
[11] 聂鑫,刘文,吴巍. 复杂场景下基于增强YOLOv3的船舶目标检测[J]. 计算机应用,2020,40(9):2561-2570.
[12] SUN X Q,LIU T,YU X P,et al.Unmanned surface vessel visual object detection under all-weather conditions with optimized feature fusion network in YOLOv4[J]. Journal of Intelligent & Robotic Systems,2021,103(3):55.
[13] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2024-12-05]. https://arxiv.org/abs/1602.07360v4.
[14] HOWARD A G,ZHU M L,CHEN B,et al.MobileNets:Efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-12-05].https://arxiv.org/abs/1704.04861v1.
[15] SANDLER M,HOWARD A,ZHU M L,et al.MobileNetV2:Inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE,2018:4510-4520.
[16] HOWARD A,SANDLER M,CHEN B,et al.Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul,Korea:IEEE,2019:1314-1324.
[17] MARQUES G,AGARWAL D,DE LA TORRE DÍEZ I. Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network[J]. Applied Soft Computing,2020,96:106691.
[18] 张玉皓,李立钢. 改进的SqueezeNet网络在船舶分类中的应用[J]. 传感器与微系统,2022,41(1):150-152,160.
[19] 王文亮,杨晓迪,张博雅,等. 轻量化卷积神经网络在船舶分类中的应用[J]. 激光与光电子学进展,2023,60(6):0610005.
[20] PURKAIT P,ZHAO C,ZACH C.SPP-net:Deep absolute pose regression with synthetic views[EB/OL]. [2024-12-05].https://arxiv.org/abs/1712.03452v1.
[21] WANG K X,LIEW J H,ZOU Y T,et al.PANet:Few-shot image semantic segmentation with prototype alignment[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul,Korea:IEEE,2019:9196-9205.
[22] TAN M X,CHEN B,PANG R M,et al.MnasNet:Platform-aware neural architecture search for mobile[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,CA,USA:IEEE,2019:2815-2823.
[23] WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//European Conference on Computer Vision. Munich,Germany,2018:3-19. |