天津科技 ›› 2025, Vol. 52 ›› Issue (04): 70-73.

• 应用技术 • 上一篇    下一篇

基于YOLOv9优化模型的海上平台劳保用品穿戴检测方法

李丙焱, 郭学广, 郑庆军   

  1. 中海油能源发展股份有限公司 天津 300452
  • 收稿日期:2025-03-03 出版日期:2025-04-25 发布日期:2026-01-06

Wearing detection method for labor protection appliances on offshore platforms based on optimized YOLOv9 model

LI Bingyan, GUO Xueguang, ZHENG Qingjun   

  1. CNOOC Energy Technology & Services Limited,Tianjin 300452,China
  • Received:2025-03-03 Online:2025-04-25 Published:2026-01-06

摘要: 针对海上平台人员作业过程监控需求,以现场人员劳保用品穿戴检测为目标,引入SE注意力机制和Focaleriou损失函数,对YOLOv9模型进行优化,以提高模型的特征提取能力和检测精度。模型优化前后纵向对比试验表明,改进模型的mAP@0.5提高了3.0%,反映了改进模型的检测精度优势。与其他常用模型的横向对比结果表明,改进模型在多个目标上的F1性能分数提升明显,说明改进模型泛化性能较好。改进模型实现了对现场作业人员及其劳保用品穿戴情况的高精度检测。

关键词: 海上平台, YOLOv9模型, 劳保用品, 目标检测, 模型优化

Abstract: Based on the operation process monitoring requirements of workers on offshore platforms,taking the wearing detection of labor protection appliances of on-site workers as the study goal,the SE attention mechanism and Focaleriou loss function are introduced to optimize the YOLOv9 model so as to improve the feature extraction ability and detection accuracy of YOLOv9 model. The longitudinal comparison experiment before and after model optimization shows that the mAP@0.5 value of improved model is increased by 3.0% compared to the original model,which proves the detection accuracy advantage of the improved model. The horizontal comparison experiment with other commonly used models shows that the improved model has highest F1 scores on multiple targets,which indicates that the improved model has better generalization performance. The improved model achieves high-precision detection of on-site workers and their wearing of labor protection appliances.

Key words: offshore platform, YOLOv9 model, labor protection appliance, object detection, model optimization

中图分类号: