天津科技 ›› 2023, Vol. 50 ›› Issue (4): 79-82.

• 应用技术 • 上一篇    下一篇

基于迁移学习的异步电机轴承故障诊断方法研究

王萌, 李涛   

  1. 中海石油(中国)有限公司天津分公司 天津 300459
  • 收稿日期:2023-04-08 出版日期:2023-04-25 发布日期:2023-12-27

Research on Fault Diagnosis Method of Asynchronous Motor Bearing Based on Transfer Learning

WANG Meng, LI Tao   

  1. Tianjin Branch,CNOOC <China> Co.,Ltd.,Tianjin 300459,China
  • Received:2023-04-08 Online:2023-04-25 Published:2023-12-27

摘要: 阐述了异步电机轴承故障诊断研究方法的发展历程,并对轴承故障的成因和早期征兆进行了分析,针对异步电机轴承不同位置发生故障时的振动特征频率进行公式推导,最终提出基于神经网络和迁移学习的故障诊断方法。通过数据预处理,将美国凯斯西储大学轴承数据集转换为单通道灰度图像,然后通过迁移学习,用预处理后的图像数据集对VGG16模型训练并微调,最终将调整后的VGG16模型在测试数据集上进行验证,其在故障分类测试中正确率接近100%。数据驱动下的故障诊断已成为重要趋势,海上油田的振动在线监测系统与分层分布系统为异步电机故障诊断打下了很好的数据基础,深度神经网络和迁移学习具有很好的应用前景。

关键词: 异步电机, 故障诊断, 轴承, 神经网络, 迁移学习

Abstract: The development history of fault diagnosis research methods for asynchronous motor bearings is described,and the causes and early symptoms of bearing faults are analyzed. The formula of vibration characteristic frequency of asynchronous motor bearings when faults occur at different positions is deduced,and a fault diagnosis method based on neural network and transfer learning is proposed. The bearing data set of Case Western Reserve University was converted into single-channel gray image,and then the pre-processed image data set was used to train and fine-tune the VGG16 model through transfer learning. Finally,the adjusted VGG16 model was verified on the test data set,and the accuracy rate was close to 100% in the fault classification test. Data-driven fault diagnosis has become an important trend. The on-line vibration monitoring system and hierarchical distribution system of offshore oilfield have laid a good data foundation for the fault diagnosis of asynchronous motor. Deep neural network and transfer learning have a good application prospect.

Key words: asynchronous motor, fault diagnosis, bearing, neural network, transfer learning

中图分类号: