天津科技 ›› 2025, Vol. 52 ›› Issue (08): 16-18.

• 基础研究 • 上一篇    下一篇

基于空间域图卷积及谱域图卷积的点云分类方法

王方如   

  1. 贵州省第一测绘院 贵州贵阳 550025
  • 收稿日期:2025-07-03 出版日期:2025-08-25 发布日期:2026-01-05

Point cloud classification method based on spatial domain graph convolution and spectral domain graph convolution

WANG Fangru   

  1. Guizhou First Surveying and Mapping Institute,Guiyang 550025,China
  • Received:2025-07-03 Online:2025-08-25 Published:2026-01-05

摘要: 为提升点云技术的应用效果提出一种高效的点云分类方法,即对点云数据集进行预处理,利用空间域图卷积,提取局部区域特征信息,然后利用谱域图卷积,提取全局特征信息,最终通过全连接层完成点云分类。试验结果表明,结合空间域图卷积和谱域图卷积的点云分类技术在图像分割任务中表现最好,收敛时的平均交并比为49.8;点云分类测试结果显示,研究模型在低矮植被分类方面准确度为97.2%,优于同类模型。由此可见,该方法应用效果良好,有利于推动点云分类技术实现更好地部署与应用。

关键词: 点云分类, 图卷积, 特征, 预处理

Abstract: To enhance the application effect of point cloud technology,an efficient point cloud classification method is proposed. Specifically,the point cloud dataset is preprocessed,spatial domain graph convolution is used to extract feature information of local regions,then spectral domain graph convolution is employed to extract global feature information,and finally,point cloud classification is completed through the fully connected layer. The experimental results show that the point cloud classification technology that combines spatial domain graph convolution and spectral domain graph convolution performs best in image segmentation tasks,with a mean intersection over union (mIoU) of 49.8 at convergence. In the point cloud classification test,the research model achieves an accuracy of 97.2% in the classification of low vegetation,which is superior to similar models. It can be seen that this technology has a good application effect and is conducive to promoting better deployment and application of point cloud technology.

Key words: point cloud classification, graph convolution, features, preprocessing

中图分类号: